Geophysics and QA/QC for UXO Detection

Munitions Response Workgroup NSWC Indian Head, MD June 26, 2003

Geosoft Inc.

Overview

- Introduction to Geosoft Inc.
- The UXO Problem
- How Geophysics Helps
- QA/QC Software Tools
- Training Sessions
- Questions

What is Geosoft?

- Team of 60+ professionals in 5 countries
- Established in 1982
- Software and services company
- Began with geophysical data processing, interpretation and presentation
- Now: mining, petroleum, marine, environmental, government and UXO
- Offer Oasis montaj and partner software, customized services, and business solutions

Geosoft Offices

The UXO Problem

Detecting UXO

Many sources of UXO uncertainty:

- Huge areas of land to be covered
- Complex processing and interpretation
- Geology (clays, massive volcanics, etc.)
- Instrument noise
- Targets need to know location, type & depth

The Solution: Geophysics

Welcome to Geophysics 101

GEOSOFT

Initial Method: "Mag & Flag"

- Hand-held metal detector (magnetometer)
- Instrument detects an anomaly (beeps)
- Small flag is placed in ground
- Benefits: covers areas which are difficult to traverse; good for small areas
- Disadvantages: all shallow targets are marked; misses deeper targets

Disadvantages of Mag & Flag

Photo courtesy of Bob Selfridge, US Army Corps of Engineers – Huntsville Center

Traditional Method: Geophysical Surveys

- Use of geophysics for UXO detection has evolved over past 5-10 years
- Surveys are typically: mag, EM-61 and GPR
- Coupled to a navigation system such as Global Positioning System (GPS)
- Detects the ferrous content or electrical conductivity properties of buried materials

Benefits of Geophysical Mapping

- Studies show: more effective than "mag & flag"
- Improved detection and reduction of false positives
- Provides archival records
- Builds a digital map of the anomalies in the area being surveyed
- Significant advantages when surveying large areas, searching for pits and trenches, and areas where items may be buried deeper than a hand-held instrument can detect

Designing Geophysical Surveys

- Understand what you are trying to find (2000 lb bombs vs. 20 mm shells)
- High sampling density needed to improve understanding of source:
 - typical sampling interval = 5 25 cm
 - typical line spacing = 0.5 1.0 m
- Choose instruments: mag vs. EM vs. GPR or combinations
- Configuration sensor height, coil separation and size, etc.

Magnetometers

Land:

- Scintrex ENVI Mag and SMARTMAG
- Geometrics G-858
 Cesium, G-856 Proton
- GEM GSM-19, GSM-19T, GSM-8, GSM-9

Marine:

- Geometrics G-880, G-881 and G-877
- GEM GSM-19M

Magnetics at Work

- Object with ferrous content acts as a magnet
- Magnetometer induces a current in the buried item which in turn produces it's own magnetic field which is detected by the instrument

Benefits of Magnetometers

- sensitivities of <1 nT
- many UXO contain a considerable amount of ferrous material
- can be used to determine the approximate location of a ferrous anomaly by the field of its dipole moment
- size of an object can also be determined from the size and orientation of the induced moment

Electromagnetic Induction

- Traditionally, only Geonics EM-61 used
- Various coil configurations (1x1m, 1x0.5m, 0.5x0.5m, EM-61 HH)
- EM-61 Mark II (4 time gates) and EM-63 now being used, as well as Zonge NanoTEM instrument
- EM-31 is sometimes used

EM at Work

- Transmitter generates a pulsed primary magnetic field in the earth (a time-varying magnetic field)
- Detects the secondary magnetic field produced by the eddy currents induced in the object
- Induces eddy currents in buried metallic objects
- Eddy current decay produces a secondary magnetic field measured by the receiver coil
- By taking the measurement at a relatively long time after the start of the decay, the current induced in the ground has fully dissipated and only the current in the metal is still producing a secondary field
- Responses are recorded and displayed by an integrated data logger

Benefits of EM-61

- Time-domain metal detector
- Detects both ferrous and non-ferrous metals
- Relatively insensitive to interference from nearby surface metal such as fences, buildings, cars, etc
- Response is a single, sharply defined peak
- Depth of the target can usually be estimated from the width of the response

QA/QC Software

- Funded by Environmental Security Technology Certification Program (ESTCP)
- Earlier efforts as a geophysical analysis tool set (UHUNTER)
- Directed by CEHNC to coincide with their efforts on documenting and standardizing QA/QC field procedures

Purpose

- Need → poor results based on poor data
- Standardize QA/QC processes within the UXO community to:
 - Improve data quality
 - Improve detection methods
- Provide a software platform for algorithm-sharing (focused to SERDP/ESTCP efforts)

Benefits

- Runs under Geosoft's free version of Oasis montaj
- Helps identify and correct instrument/acquisition errors prior to demobilization
- Less reworking of areas = cost savings

Quality Control (QC) Module

GEOSOFT

Quality Assurance (QA) Module

Completed Software

Survey Planning Tools

Survey Planning Tools

- Setup Parameters → stores project info, including projection
- Audit log

 tracks what has been done to data
- Plan a UXO Survey → pre-design a UXO survey
- Import → import data from a variety of instruments

Plan a UXO Survey

Survey Maps

Progress Status Report

Data Corrections

GEOSOFT

Base station correction...
Heading correction...
Instrument drift correction...
Single sensor offset correction...
Multiple sensor offset corrections...
Instrument latency correction...
Non-systematic lag correction...

Diurnal Variations

- earth's magnetic field intensity varies naturally as the earth rotates in the ionosphere (solar wind) of the sun
- "diurnal" because the variation has a natural period of one day
- magnetic storms (from sun spots) can shake the field by 100's of nT over a few minutes

Magnetic Storms

Base Station Correction

Apply base station corrections to	mag data	×
Base station file	BasesStationMag.bas	Browse
Input GDB Date channel (optional)	DATE	
Input GDB Time channel	TIME	•
Input GDB Raw mag channel	BASEMAG	-
Output GDB Corrected mag channel	basestation_corr	-
Base station tolerance (nT/sec)	2.0	
Next> 0	Cancel Help	

Lag Problems

- instrument is being towed behind or in front of the data logger
- readings need to be shifted back over top of where they should be
- also introduced into data
 when the instrument is in
 automatic data collection
 mode and operator varies
 their walking speed and/or is
 surveying in mountainous
 terrain

Lag Correction

Enter parameters for sensor 2
Sensor data channel BOTTOM_RDG
Sensor offset in direction of travel 0.5
Sensor offset across direction of travel -0.5
Smoothing interval for heading 3
<back cancel="" finish="" help<="" preview="" th="" =""></back>

Heading Problems

- mag sensor position doesn't always point in the same direction during a survey
- heading errors due to variable positions of sensor, operator, and mag console relative to one another in the primary magnetic field
- systematic shift in data
- heading problems can introduce errors of 1-2 nT in data

Heading Correction

- heading problems show up as "striping" on a map
- take readings in different directions (N, S, E and W) with mag while collecting continuous readings
- create a heading table

Heading correction		×
Heading table name	booding thi	Drawcal
_	neading.tbl	Browse
X reference channel	<u> </u> ×	<u> </u>
Y reference channel	Υ	•
Channel to correct	mag	•
Output corrected channel	Heading_Corrected	₹
OK C	ancel Help	

Instrument Drift

- thermal changes in the instrument throughout the day
- causes sensor drift
- due to instrument electronics heating up
- EM-61 can drift several mV over course of a day

Solution: Drift Correction

- Allow instrument to warm up prior to use; or
- Use test line at beginning of day and end of day; or
- Manually correct lines by examining profiles; or

Drift Corrections

EM Data Corrections

EM Data Corrections

- Import raw Geonics dump files (*.R61)
- Correct line names, directions, start/end stations
- Adjust fiducial locations
- Merge survey data with GPS data

Import survey data	Walter Commence	×
Import Data Type	R61	-
Data File	A32322QC.R61	Browse
GPS File Type	None	Ţ
GPS file		Browse
Add Projection to Database?	Yes	-
Import to one line?	No	Ē
Import line number as a channel?	Yes	-
ОК	Cancel Help	

EM Data Corrections

Instrument Tests

Static calibration...
Instrument response...
Positional accuracy...
Azimuth test...
Octant test...

Instrument Height Test

- Task: Instrument Tests
- Add statistics to height optimization test map

Closest peak to target:

Amplitude 361.29, Location 40.44

Amplitude 219.82, Location 41.18

Amplitude 157.39, Location 41.43

$$\frac{Amp1}{Amp2} = 1.64, \qquad \frac{Amp2}{Amp3} = 1.40$$

Quality Control Tests

Statistics

Survey line separation...

Sample separation...

Noise threshold...

Optimum sensor height...

Survey Statistics

💋 stats.txt - Note	pad							
File Edit Format	Help							
Channel: _ine Number	Total_Field Minimum	Ma×imum	Mean 	Median	Mode 	Std.dev.	1st diff.StD.	4th di1
LO:0 L1:0 L1:0 L2:0 L3:0 L4:0 L5:0 L6:0 L7:0 L8:0 L9:0 L10:0 L11:0 L12:0 L13:0 L14:0 L15:0 L14:0 L15:0 L15:0 L15:0 L16:0 L17:0 L22:0 L23:0 L23:0 L24:0 L24:0 L25:0 L24:0 L27:0 L28:0 L29:0 L30:0 L31:0	53082.01 53387.45 53422.46 53412.36 53435.09 53431.15 53430.65 53021.52 53389.81 53352.07 53410.58 53410.58 53410.65 53418.01 53374.96 53421.00 53374.96 53421.00 53374.96 53421.00 53374.96 53421.00 53374.96 53421.00 53374.96 53421.00 53374.96 53421.00 53374.96 53421.00 53374.96 53421.00 53374.96 53421.00 53374.96 53421.00 53374.96 53421.00 53374.96 53421.00 53374.96 53421.00 53374.96 53421.00 53374.96	54017.88 53517.07 53563.07 53507.18 53507.18 53507.21 53515.27 53487.64 53516.62 53481.15 54041.61 53573.62 53510.30 53479.51 53510.86 53621.08 53621.08 53621.08 53621.08 53621.08 53548.31 53548.2.82 53574.91 535974.24 53548.31 53974.24 53825.35 53608.05 53687.27 53582.29	53462.50 53457.56 53458.68 53456.22 53456.02 53457.75 53450.20 53454.83 53448.92 53456.40 53450.24 53453.30 53455.15 53455.79 53455.79 53459.14 53452.46 53452.29 53456.96 53458.36 53458.36 53458.36 53458.36 53458.36 53458.36 53455.55 53458.36 53455.55 53458.36 53455.55	53471.96 53457.66 53457.61 53455.82 53452.85 53458.86 53458.51 53455.86 53451.97 53455.42 53455.42 53455.42 53455.42 53455.58 53455.58 53457.49 53457.58 53457.49 53457.19 53458.89 53458.49	53462.21 53453.61 53454.83 53454.83 53454.27 53457.98 53453.65 53454.54 53456.59 53456.59 53456.36 53452.40 53459.60 53459.60 53459.72 53449.99 53451.87 53452.72 53449.99 53451.87 53452.72 53449.99 53451.87 53452.72 53449.99 53451.87 53455.24 53455.24 53455.24 53456.44 53455.24 53456.44 53455.56 53454.72 53466.40 53466.40 53465.34 53465.34 53465.34 53466.40 53465.34 53466.40 53465.34 53466.40	61.05 14.47 13.31 10.18 6.98 5.33 9.43 32.11 11.39 12.14 35.80 17.27 10.14 8.97 8.69 18.63 13.87 18.94 15.27 22.50 33.95 182.29 199.21 15.87 13.94 43.09 33.70 50.39 72.07 26.41 6.36 20.19	49.94 9.09 7.20 6.26 4.29 3.73 6.50 23.93 6.41 7.76 37.73 13.64 6.18 4.94 4.95 13.10 7.49 16.66 9.70 5.40 10.46 39.76 37.67 9.49 8.91 43.64 23.07 23.93 36.24 13.09 2.49 17.82	174.98 36.04 23.35 27.03 15.88 16.84 25.44 74.97 21.78 28.53 178.77 50.72 24.17 21.80 18.96 45.15 22.60 95.01 37.63 17.61 31.88 35.83 66.73 34.17 34.56 87.96 101.71 35.70 66.98 19.71 8.44 84.91

Quality Assurance Tools

Prove-out results...

Distance to corners...

Line coverage comparison...

Density coverage comparison...

Total coverage comparison...

Target density calculation...

Prove Out Results

Task: Prove Out Map

- Add "bulls-eye" pictorial representation to maps
- Add target statistics to map

Targets found within radius of 1 m: 15
Targets found within radius of 0.5 m: 7
Total Number of targets reported: 22
Total Number of truth targets: 41
Total Score: 29

Success To Date

- QA/QC tools are being used on a variety of UXO sites
- CEHNC will compare data collected prior to tools being released to verify if data quality has improved
- Analysis algorithms are already being developed by multiple groups (e.g. AETC, ERDC, Zonge)

Contractors Using Software

- AETC
- American Tech. Inc.
- Apex Environmental
- Blackhawk
- Booz, Allen, Hamilton
- Dillon Consulting (Canada)
- Donaldson Enterprises
- Earth Tech
- ECC
- Environmental Mapping
- Foster Wheeler

- Geophex
- NAEVA Geophysics
- G-tek (Australia)
- Parsons
- SAIC
- Tetra Tech
- UXB
- Weston Solutions
- Zapata Engineering
- Zonge

Future Development

- MTADS support (with AETC)
- Geophex algorithms
- ECC algorithms
- PNL VSP algorithms
- EM modeling research
- Enhancements/additions
- Preparation for real-time mapping
- Broaden scope for other facets of DoD

Training on QA/QC Software

- Huntsville Center will be hosting a training session (potentially in Huntsville) in October 2003
- All facets of DoD are invited to participate
- Other training can be arranged with Geosoft at alternate locations

Questions/Feedback?

- Software available upon request.
- Technical support available by Geosoft.
- POC: Geosoft Inc.
- All feedback is appreciated.

€ <d-npr m<="" th=""><th>av2003\DriftCorr</th><th>ection\m6</th><th>1DemoS1003.gd</th><th>h></th><th></th><th></th><th>×</th></d-npr>	av2003\DriftCorr	ection\m6	1DemoS1003.gd	h>			×
✓ L4:0	Fiducial	M1	M2	M3	M4	TIME	Ē
0.0	0.00	-1.11	-0.42	-0.25	-2.93	19:23:55	F
1.0	1.00	-0.79	-0.65	0.27	-1.79	19:23:58	1
2.0	2.00	-0.75	-0.36	0.09	-3.50	19:23:59	1
3.0	3.00	-0.83	-0.48	0.27	-1.78	19:24:00	
4.0	4.00	-1.19	-0.36	0.09	-2.93	19:24:01	1
5.0	5.00	-1.50	0.15	0.44	-0.63	19:24:02	1
6.0	6.00	-1.16	-0.08	0.18	-2.35	19:24:03	1
7.0	7.00	-0.75	-0.25	0.00	-2.35	19:24:04	1
8.0	8.00	-0.99	-0.60	0.44	-2.92	19:24:05	1
9.0	9.00	-1.31	-0.14	0.26	-1.20	19:24:07	1
10.0	10.00	-1.36	-0.55	0.61	-1.20	19:24:08	1
11.0	11.00	-1.75	0.31	0.52	-2.91	19:24:09	
12.0	12.00	-1.00	-0.67	-0.26	-2.91	19:24:10	
13.0	13.00	-0.36	-0.50	0.09	-3.48	19:24:11	
14.0	14.00	-2.12	-0.04	0.09	-2.34	19:24:12	
15.0	15.00	-0.98	0.02	0.43	-1.76	19:24:13].
-						<u> </u>	<u>「</u>
18.91							
1.66	Management						

801.0

1618.0

-15.58

M1 (Fid) -16.0

